Methods for proving identities

General principles

- Only rewrite each side of the equality do **NOT** perform equal operations on both sides as if solving an equation
- Work on the harder side first typically the side with addition, fractions or more operations
- Keep in mind what the other side looks like to determine what terms or factors need to be introduced

<u>Analytic (algebraic) techniques (generally in the following order)</u> <u>Repeat steps 1, 2, 3 as many times as necessary</u>

- 0. Use the negative angle identities
- 1. Use the Pythagorean identities if there are even powers of trigonometric functions, especially if both functions from one Pythagorean identity are involved
- 2. Use the reciprocal and/or quotient identities if there are 3 or more trigonometric functions, or 2 trigonometric functions which are not related by a Pythagorean identity simplify any resulting complex fractions immediately
- Use general algebraic techniques factoring / distributing performing fraction operations (adding, subtracting, multiplying, dividing, simplifying complex fractions) adding & subtracting the same quantity multiplying by a fraction with the same numerator and denominator

Basic identities

Negative angle identities:	$\sin(-x) = -\sin x$	$\cos(-x) = \cos x$	$\tan(-x) = -\tan x$
	$\csc(-x) = -\csc x$	$\sec(-x) = \sec x$	$\cot(-x) = -\cot x$
Pythagorean identities:	$\sin^2 x + \cos^2 x = 1$	$\sin^2 x = 1 - \cos^2 x$	$\cos^2 x = 1 - \sin^2 x$
	$\tan^2 x + 1 = \sec^2 x$	$\tan^2 x = \sec^2 x - 1$	$\sec^2 x - \tan^2 x = 1$
	$\cot^2 x + 1 = \csc^2 x$	$\cot^2 x = \csc^2 x - 1$	$\csc^2 x - \cot^2 x = 1$
Reciprocal identities:	$\csc x = \frac{1}{\sin x}$	$\sec x = \frac{1}{\cos x}$	$\cot x = \frac{1}{\tan x}$
	$\sin x = \frac{1}{\csc x}$	$\cos x = \frac{1}{\sec x}$	$\tan x = \frac{1}{\cot x}$
Quotient identities:	$\tan x = \frac{\sin x}{\cos x}$	$\cot x = \frac{\cos x}{\sin x}$	
Cofunction identities:	$\cos x = \sin(\frac{\pi}{2} - x)$	$\csc x = \sec(\frac{\pi}{2} - x)$	$\cot x = \tan(\frac{\pi}{2} - x)$
	$\sin x = \cos(\frac{\pi}{2} - x)$	$\sec x = \csc(\frac{\pi}{2} - x)$	$\tan x = \cot(\frac{\pi}{2} - x)$